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An arbitrary complex polymer loop embedded in three-dimensional space and topologically entangled
with a quenched array of randomly dstributed parallel rods is considered. It is shown that an ensemble
of the complex loops, prepared in different possible ways, is equivalent to the ensemble of cactuslike
graphs where the leaves of these cacti are simple loops. The free energy of the cactuslike graphs is calcu-
lated in the mean-field approximation. The critical condition for the collapse transition is obtained. The
collapsed state of the complex loop with the density distributed over different leaves is shown to be
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I. INTRODUCTION

In this paper we extend the consideration of the statis-
tical thermodynamic properties of a single closed poly-
mer chain (with an excluded-volume interaction) topolog-
ically entangled with an array of immobile randomly dis-
tributed (in the xy plane) parallel (in the z direction) rods
to the behavior of the complex loops. In the previous
part of the work [1] (referred to hereafter as I) our con-
sideration was restricted to simple loops only, which are
defined by the projection onto the xy plane, having no
points of self-intersections. We considered the thermo-
dynamic properties of simple loops in a random array of
topological obstacles, states of which are characterized
by the average loop length, the average number (and its
dispersion) of enclosed rods, and the spatial dispersion of
the density of rods in the xy plane. We concluded that at
some critical values of these parameters the disorder-
induced collapse transition in the simple loop occurs.
The present paper extends the method proposed in I to
an arbitrary and so less restrictive initial configuration of
the chain (complex loop) embedded in three-dimensional
(3D) space which has the points of self-intersections on
the xy projection.

We would like to pay particular attention to the inves-
tigation of the influence of the “preparation conditions”
on the thermodynamic properties of the polymer loops.
Under the preparation conditions we understand the ini-
tial topological state of the complex loop with respect to
the randomly distributed array of parallel rods. The im-
portance of this question and the attempts to describe it
quantitatively are obvious for the following reasons.

It is well known that the elastic and swelling properties
of the polymer networks and gels depend strongly on the
initial topological configurations, i.e., preparation condi-
tions of the chains in the sample. The corresponding ex-
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perimental data can be found in Ref. [2], whereas Ref. [3]
has been devoted to some qualitative physical explana-
tions of this phenomenon.

The influence of the preparation conditions on the
chain statistics on a quantitative level was undertaken in
the framework of the model “polymer chain in a transla-
tion lattice of obstacles” [4,5]. Apparently the case of
translation lattice seems in some sense to be a degenerate
one because the presence of random disorder in the spa-
tial distribution of the topological constraints changes the
chain statistics dramatically (see I).

Two basic conclusions will be formulated in the present
paper.

(i) An arbitrary complex loop in a quenched array of
topological obstacles can be represented in the form of a
cactuslike type where the leaves of these cacti are the
simple loops containing no points of self-intersections on
the projection onto the xy plane. The points which fasten
the different simple loops play the role of self-
intersections.

(ii) The collapse transition of the complex loop with the
fixed preparation conditions can occur independently of
different ‘“leaves” when the chain length is increased,
whereas the simultaneous collapse of all leaves together is
entropically unfavorable.

The main features of the theoretical methods used here
have been proposed in I and represent themselves as the
combination of the field-theoretic effective potential
treatment [6] with replica approach [7]. The instability
with respect to collapse transition in the different leaves
can be described in a self-consistent way by a so-called
asymmetric solution corresponding to the simplest
(Gaussian) trial function with a variational parameter.
This method corresponds to the well-known Feynman
variational principle [8].

The paper is organized as follows. In Sec. II we de-
scribe the construction of the cactuslike representation
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for the complex loops starting from the simple one treat-
ed in I. The field-theoretic approach is elaborated in de-
tail in Sec. III. The variational principle is suggested in
Sec. IV, where symmetric and asymmetric solutions are
analyzed in parallel.

II. CACTUSLIKE REPRESENTATION
OF THE COMPLEX LOOP

Let us consider an arbitrary polymer loop embedded in
3D space and topologically entangled with an array of
immobile randomly distributed rods which are placed
normal to the xy plane (see Fig. 1). We assume that the
loop does not produce any entanglements by itself, so its
2D xy projection gives exhaustive information about its
topological state with respect to the rods. This state is
the only one that is assumed to matter. To account for
more general situations, such as initially knotted loops,
that are thrown on the array of obstacles requires a more
sophisticated analysis, which blurs the main essential re-
sults derived below.

Let us neglect for a moment the possibility of topologi-
cal constraints and only pay attention to the so-called
shadow graph, which is the projection of the closed chain
onto the xy plane. Let us now make the reasonable as-
sumption that this graph represents a general situation,
i.e., it contains double points of path self-intersection
only. An arbitrary shadow graph (corresponding to the
complex loop) can be represented in the form of
equivalent cactuslike graphs where each leaf has no
points of self-intersections.

This correspondence is in general not unique, as can be
seen from the following example: one shadow graph can
be represented by several different cactuslike graphs (see
Fig. 2). In Fig. 2 we show different ways of representing
one shadow graph [Fig. 2(a)] by two cactuslike graphs
[Figs. 2(b) and 2(c)]. The different non-self-intersecting
leaves of the cactus are shaded. It is necessary to distin-
guish two kinds of points in cactuslike graphs. One sort
of point joins different leaves of the cactus and will be
called a junction point. Such points in Figs. 2(b) and 2(c)
are marked with bold circles [points 1, 2, and 3 in Fig.
2(b) and points 1, 4, and 5 in Fig. 2(c)]. The second type
of point occurs as a result of overlapping of the different
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FIG. 1. The example of a complex loop (and its 2D projec-
tion) entangled with a random array of topological obstacles.

(a)

2]

(c) (e)

FIG. 2. A shadow graph (a); two types of its cactuslike repre-
sentation (b) and (c); (d) and (e) are topological types corre-
sponding to (b) and (c).

leaves. We call them regular points [points 4 and 5 in
Fig. 2(b) and points 2 and 3 in Fig. 2(c)].

These differences of the covering of the shadow graph
actually correspond to different ways of preparation of
the initial shadow graph. The way of preparation is a
succession of “‘elementary technological operations” that
produce a complex loop with junctions and regular points
starting from a loop without self-intersections. To be
more rigorous let us introduce the following definition.

Definition. We distinguish the Reidemeister moves es-
tablishing the equivalence relations of shadow link dia-
grams.

R

All three moves together are called ambient homotopy
transformations, whereas moves (2) and (3) represent the
regular homotopy transformations [9]. According to our
nomenclature above the crossing point in move (1) is
called a junction point; the crossing points in moves (2)
and (3) are called regular points.

The contents of this section can be summarized in the
following statement.

Statement. The regular way of preparation of an arbi-
trary shadow graph corresponding to the complex loop is
as follows:

(1) We start from the simple loop and create the neces-
sary number of junction points by means of move (1).

(2) We deform continuously the resulting cactuslike
graph employing moves (2) and (3), keeping the number
of junction points fixed.

(3) We sum over all different cactuslike graphs leading



3316

to the given complex loop.

Assumption. We suggest the probability distribution of
formation of different cactuslike graphs to be uniform.
Only in this case is the fraction of the shadow graphs in
the ensemble increased exactly proportional to the num-
ber of covering it with cactuslike graphs. For example,
the fraction of the shadow graph in Fig. 2(a) is increased
twofold as a result of two types of its cactuslike coverings
(or representations). So, this assumption gives us a possi-
bility to determine the one-to-one correspondence be-
tween the ensembles of all shadow graphs and all cactus-
like graphs. Otherwise (for nonuniform probability dis-
tribution) it would be necessary to discriminate the frac-
tion of the different cactuslike graphs [e.g., Figs. 2(d) and
2(e)], which makes calculation much more complicated
but does not change the main conclusion of this paper.
Let us stress that this probability distribution has nothing
in common with the actual statistical weight of cactuslike
graphs, which results from configurational partition func-
tion of a graph with fixed number of junction points.

The real form of this probability distribution is a prob-
lem of preparation conditions of the complex loop system
and is considered here as a given information (see the end
of Sec. IV). Nevertheless, it seems to us natural that at
the “random preparation” all different cactuslike species
have the same fraction in the ensemble.

Finally, we emphasize that (in principle) the different
preparation conditions could correspond to the cactuslike
graphs of the same topology (see, for instance, Fig. 3).
From the topological point of view the graphs in Figs.
3(b) and 3(c) are identical; they both should contribute to
the shadow graph [Fig. 3(a)]. To distinguish these
equivalent graphs we have to define from the very begin-
ning the orientation (i.e., the direction of the pathway) on
the shadow graph. Hence the topological charge of a
simple loop (or leaf) can be both positive and negative (as
has been used in I).

III. EFFECTIVE HAMILTONIAN AND MEAN-FIELD
FREE ENERGY OF THE CACTUSLIKE SYSTEM

A. Field-theoretic representation of the model

In the preceding section we showed that an ensemble
of randomly prepared shadow graphs coincides with an
ensemble of cactuslike graphs. Let us recall the Hamil-
tonian from I, where we considered a simple polymer
loop without self-intersections in a quenched array of
topological obstacles. The replicated Hamiltonians that
describes this particular system is of the following form
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FIG. 3. Twofold [(b) and (c)] cactuslike representations of the
same shadow graph (a); (d) and (e) are topologically equivalent
to each other but have a different distribution of topological
charges.

(see also Ref. [10]):
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where ¥V={4¢,...,¥,} and ¥*={4¢y,...,¢,}, 7 is the
chemical potential conjugate to the chain length, / is the
length of loop segment, and L is the mean size of the coil
in the z direction. The topological character of the
theory is reflected in the vector potential A(r); g is the
chemical potential conjugated to the number of obstacles
enclosed by the loop (see I for more details), ¢, is the
mean density of obstacles in the xy plane. The replica in-
dex n is necessary for averaging of the free energy over
the quenched disorder with simultaneous extracting of
non-self-intersecting loops. The fourth-order vertex has
hypercubic but not O (n) symmetry because at » —0 only
intrareplica interactions survived (see I).

To determine the structure of the complex loop we at-
tribute an additional index i to the fields ¥, and ¥2;
(i=1,...,m), which enumerates different leaves. The
replica index a now counts the whole connected graph.
Besides, an additional fourth-order vertex appears in the
Hamiltonian, corresponding to the junction points. Thus
let us introduce the Hamiltonian
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where 7 is the mass term, i.e., here the chemical potential
conjugate to the length of the whole connected graph, w
is the fugacity corresponding to the number of junction
points; I, L, and ¢, are defined above.

The roman indices which enumerate the different
leaves are allocated in such a way that the first fourth-
order term in Eq. (2) corresponds to the 2D repulsion of
excluded-volume type inside a simple loop (as in I);
whereas the second fourth-order term fastens together
only the different simple loops. The greek indices are at-
tributed now to the whole connected graph.

The partition function corresponding to the Hamiltoni-
an (2) is given by

Z(””")=exp{
= [ D ADY,Dpkexp{ —H[vo; ¥ A}, )

where the generating function of the connected graphs
(free energy) has the form

—F("’"')}

S S CkB(k;p) |——

k=1p=1
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where B(k ;p) is a contribution of a connected graph con-
1

structed from k simple looFs with p junction points and
the combinatorial factor C,, gives the number of ways in
which such contribution can be accomplished.

It is easy to see from the general expression Eq. (4) that
the limit m — o0 corresponds to the cactuslike graphs
with p =k —1 which are surviving. As a result the free
energy of the quenched cactuslike system is given by

d
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where the factor k! has its reason for the indistinguish-
able junction points and the condition mn—0 is
preserved.

B. Effective free energy

Now we are in a position to do the same calculations as
in I. Namely, after integration in Eq. (4) over the vector
potential A, we can write the effective free energy in the
mean-field approximation with respect to ¥ fields as fol-
lows:
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¢ is a mean topological charge of simple loops and A, stands for its dispersion. In Eq. (6) A
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is a cutoff parameter ap-

pearing due to ultraviolet divergence of a resulting integral, and the “mass” renormalization counterterm B is intro-

duced to subtract this divergence.

To this end we define the counterterm B by the condition
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We assume this point to be symmetrical with respect to all in-
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Proceeding from the condition (7) we obtain the value of B and substituting this in Eq. (6). We find for the free energy
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where the fourth-order vertex has the form

La? w
vy=Es,— (-5, . (9b)

The validity of the mean-field approximation and the role
of intrareplica fluctuations were investigated in Sec. 3.2
of I. The contribution of interreplica fluctuations and —
as a probable possibility—the replica symmetry break-
downs are much more involved problems and need addi-
tional investigation.

IV. VARIATIONAL PRINCIPLE

A. Basic notions

The expression (9a) for the effective free energy in the
mean-field approximation is symmetric with respect to
the permutations of the ¢ fields in the leaves and replica
spaces. On the other hand, the nontrivial structure of the
fourth-order vertex (9b) in the leaf space provokes us to
look for an asymmetric leaf-space solution for the con-
densed state.

Such a solution (symmetric in the replica space and
asymmetric in the leaf space) can be presented in the
form

¢ai :J+6i’

where 1, and ¥ * are average values of the order parame-
ters, and 6 fields determine the dispersion over the leaf
space
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Below we will consider separately two possibilities [(13)
and (15)] of the thermodynamic behavior.

B. Symmetric solution
In this case 02=0 and the free energy has the form
)=L(La’—w,)p?

I’z
32 psln(ps /) +Tips

Sfs(pg;Tw
(17a)
where

r*=r—uXLa*—w, )+-¢— .

16 (17b)

Then the minimization with respect to p, yields

La’—2%
7

Let us suggest the simplest trial function, which is of
the Gaussian form for the distribution function

P(6,,6%) < exp [——1—29,.9;.* } . (12)
20

Actually, the distribution (12) can be regarded as a trial
function with a variational parameter 0>. Now we are in
a position to utilize the variational principle in the fol-
lowing.

Let us substitute Eqs. (10) and (11) in Eq. (9), taking
into account the distribution (12), and proceed with the
limit m — o in the spirit discussed above. As a result we
obtain the free energy in the asymmetric state

falpar,o%T,w)=1lim lim —I—F("”")(p oy, ((13)

n—-0m—owo MR

where p=1yy* stands for the densny in this state. The
variational parameters p and o are the solution of the
pair of coupled equations

()

~o3/alpard?)=0. (14)

d 2
~apa falpar0?)=0,

The asymmetric solution corresponds to the case o> 0.
Its symmetric counterpart appears in the case o2=0,

fi(ps,d?=0)=1lim lim LF""”(ps,a2=0) (15)

n—0m-— o

and the free energy is only a function of the density. The
minimization determines the density in the symmetric
state p.

The realization of this program results in the expres-
sion for the free energy (13)

(02)?
(La’~w)p—pu? Laz——lg— o?
(16)
[
lZgZ
(La2—ws)ps=93———167 [In(p, /u?)+1]—27* . (18)

As discussed in I this equation has one stable and one
unstable equation. So the first-order order transition
(loop condensation) occurs and the binodal curve is deter-
mined by the equation

1 :912§21n q)llg-Z L
N;’in 327 167 (Laz——-ws )/_1,2

> (19)

where NP™ stands for the renormalized loop length at the
binodal point. We have used as in I the relation

N=-L . (20)

7'*

It is obvious that the symmetric solution corresponds
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to the case of the simple loop considered in I with the

only substitution La’—La?’—w,. The fugacity w,>0

(see below) and this means that N°® < N%" (simple loop).
The free energy (17a) at the binodal point has the form

1
La*—w,

<p12§ 2
167

bin_ 1
$ 4

(21

As usual, the renormalized quantity N is a function of
an arbitrary subtraction point ,uz. However, a small
change in u? is compensated by an appropriate small
change of NP and density p,. This idea is the main
point of the method of renormalization group [6].

C. Asymmetric solution

In this case Eqgs. (14) have the form

Wq

2

2
a

LLa*~w,)p,+ |La*— o

2=2
—%;ln[(pa +03)/p]
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327
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These equations can be transformed to

2=2
(2La’—w, )0§=-¢ll—6§—r—{ln[(pa+0‘2,)/u2]+l}-—27':
—(La*—w,)p, , (22b)
where
La%p,=2L8" | 2, (22¢)
pa 1677' u a
and
2=2
T:ZT—,[LZ(L(ZZ"wa)—"% . (22d)

The analysis of these equations shows again that the
nontrivial values of p and o? appear as a result of a first-
order phase transition. For the binomal curve we find

pl’g? L
16 (2La’—w, )u?

2-2
1 =<plg In

2
N‘l;in 321 +3La‘p, .

(23)
The corresponding free energy (17a) at the binodal point
has the form

¢12§2
167

in_ 1 1 1
in— 7 +-—-La’p, . 4)

2La*—w, 4

It is interesting to compare the values N’ and NP®
[see Egs. (19) and (23)]. To this end we have to consider
the density of junction points k as a given quantity with
its value being fixed as a result of preparation.

This density « can be expressed twofold. In the sym-
metric case it has the form

f
5w,

K==W,

w

1
(La?—w,)?’

9123- 2
167

s

4

(25)

whereas in the asymmetric case we have

afbin
a
K=w, Y
a
1
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.—.wa
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The expression for the difference between NP" and NY"
can be written straightforwardly and from Egs. (19) and
(23) we find

2_
La“—w,

2La’—w,

1 1 _ol’g?

N};in Nsbin 167

+1 [+p*w, . 27

For appreciation of the logarithmic term in Eq. (27) we
obtain from Egs. (25) and (26) the expressions

La*—w, w,
—_—= (28a)
2La*—w, W,
where
w,=1(2La*+X)—1/La’X +1Xx* (28b)
and
w,=1(4La’+X)—1/2La’X +1X?, (28¢)
1 | pl’g? ’
=1 g
4k 167 28d)

We suppose that the density of junction points is rather
high, so that

wflaﬁ >>1 . 29)
In this region Eqgs. (28b) and (28c) are transformed to

w,=La*[1—V(1/La®X ], (30a)

w, =2La’[1—V(1/2La%X ] (30b)
and Eq. (27) obtains the form

N,lfi" - N:bin ~ 9’11;572 (1-n2)+p2w, >0 . (1)
Thus the resulting inequality

NDPin < NYin < N0 (simple loop) (32)

yields the next conclusion.
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Let us first prepare the ensemble of complex loops with
a given length N, and mean topological charge c, of the
simple loops (or cactus leaves) with the dispersion A, and
density of junction points «; the random array of obsta-
cles is characterized by its 2D density ¢, We call this set
(as in I, where k=0) {Ny,cq,A.,k, @y} the preparation
conditions. If now, to grow the chain length, keeping the
preparation conditions fixed, then the loop condensation
occurs at N =NJ" and the loop thermodynamic state
corresponds to the asymmetric solution.

We emphasize that the inequality (29) is crucial for the
result (32). It is easy to see that in the case opposite to
(29) (small density of junction points) Egs. (22b)—(22d) re-
sult in a nonphysical solution for 02 (62 <0). This means
that the asymmetric state becomes favorable at high den-
sity of junction points or, in other words, a highly entan-
gled state. It can be seen from Egs. (30a) and (30b) that
in this region w, <La? and w, <2La? so the fourth-
order vertex does not change its sign and the collapse is
induced by the randomly distributed obstacles.

V. CONCLUSION

This paper extends the results on simple loops without
the junction points presented already in paper I to the
case of complex loops which have initial junction points,
remaining from the preparation. We succeeded in

decomposing the complex loops into areas of simple
loops, since the number of junction points is conserved.
Within these simple portions the theory of I can be ap-
plied, where only excluded volume forces and the con-
straints from the topological charge matter. To account
for complex loops a second fourth-order vertex with an
opposite sign in the polymer-field Hamiltonian has been
introduced. The general result of I has not been changed
but the phase behavior becomes richer in the sense that
limiting cases for the loop length and for the symmetric
and the asymmetric solutions are found.

The next step which can be achieved in this unusual
system is the deformation behavior of the loop constraint
by the topological charge which can serve as an easy
model for rubber elasticity for strongly entangled sys-
tems. The entanglements are represented by the rigid
rods, and the polymer loop represents a test chain in the
entangled ensemble. The effect of the conservation of the
trapped entanglements by the topological charge, in addi-
tion to the volume exclusions, will be the subject of a sub-
sequent paper.
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